fire_point_source Module Verification

The fire point source model is formulated according point source model explained in Casal book [Ref.1]. To validate the calculations of this module, example 3.4 of Casal book chose. The following code model the example condition and the final result is checked by example results.

The below codes can be downloaded from here in Jupyter Notebook format.

Verification:

opr.wipe()

#Define Wind Rose
windobj=opr.WindData.WindRose(1)
windobj.WindSpeed=0
windobj.WindDirection=90

#Define Site Condition and Geometry
SiteTAg=1
obj=opr.Sites.Site(SiteTAg, Temperature=16+273, Pressure=1*10**5, XSiteBoundary
                   g=9.81,Humidity=0.79,Airdensity=0.270)

#Define Substance
subsobj=opr.Substance.DataBank.Butene(1) #Use DataBank to Load Material
subsobj.Specific_Heat_of_Combustion=41900*1000

#Define OutFlow Model
OutflowObj=opr.OutFlowModel.TankHole(1, Hole_Diameter=0.05, Hole_Height_FromBot
#Define Dispersion Model
DispObj=opr.DispersionSpreadModels.LiquidSpread(tag=1, MatTags=[1], OutFlowMode

#Define Dike for Tanks
opr.Safety.Dike(1,0,3.1415*6**2/4)


PlantObj=opr.PlantUnits.ONGStorage(1,SiteTag=1,DikeTag=1, SubstanceTag=1,    Di
                                   Horizontal_localPosition=0,    Vertical_loca
                                   Height=20,SubstanceVolumeRatio=0.9)

#Manually define OutFlow Model for above Unit Object
PlantObj.OutFlowModelObject=OutflowObj
OutflowObj.UnitObject=PlantObj
PlantObj.OutFlowModelObject.Calculate()


#Manually define DispersionSpread Model for above Unit Object
PlantObj.DispersionSpreadModelObject=DispObj
PlantObj.DispersionSpreadModelObject.UnitObject=PlantObj
PlantObj.DispersionSpreadModelObject.Calculate()


obj=opr.PhysicalEffect.fire_point_source(1,minf=0.0501,k=1.5)
obj.UnitObject=PlantObj
[H,Hmax,D,Dprin,alpha,m]=obj._fireGeometry()
[Lp,d,phi,xf,yf]=obj._DistanceToFireCenterGeometry(18,0,1.6)


print('H,D,m=',round(H,2),round(D,2),round(m,2))
print('Lp,d,phi=',round(Lp,2),round(d,2),round(phi,2))

print('Thermal Radiation intensity=',obj.Thermal_Radiation_at_Point(18,0,1.6) )

print('in casal Example 3.4, \nD=6 m \nH=11.5\nPoint coordinate=[18,0,1.6] \nHeat Of Combustion=41900*10^3\nHumidity=0.79\nm=0.05')
print()
print('And the result Thermal Radiation intensity= 2800 W/m^2')
print('That is compatible with the above results!')

The result of above code has been shown in the following:

H,D,m= 11.5 6.0 0.05
Lp,d,phi= 18.47 15.39 0.23
Thermal Radiation intensity= 2878.505632375152

in casal Example 3.4,
D=6 m
H=11.5
Point coordinate=[18,0,1.6]
Heat Of Combustion=41900*10^3
Humidity=0.79
m=0.05

And the result Thermal Radiation intensity= 2800 W/m^2
That is compatible with the above results!
[Ref.1]

J. Casal, Evaluation of the Effects and Consequences of Major Accidents in Industrial Plants, vol. 8. 2018.

Code Developed by: Bijan Sayyafzadeh